この文献を取り寄せる

このページのリンク

Catalysis for a sustainable environment : reactions, processes and applied technologies / edited by Armando J. L. Pombeiro, Manas Sutradhar, Elisabete C. B. A. Alegria

データ種別 電子ブック
著者標目 Pombeiro, Armando J. L editor
Sutradhar, Manas editor
Alegria, Elisabete C. B. A editor
出版情報 製作表示:Hoboken, NJ : Wiley , 2024

所蔵情報を非表示

URL 図書館共通

EB007902
9781119870647 禁帯出

書誌詳細を非表示

巻次 ISBN:9781119870647
ISBN:111987064X
XISBN:9781119870524
大きさ 1 online resource (3 volumes)
一般注記 Volume -- 1 Introduction 1 Armando J.L. Pombeiro, Manas Sutradhar, and Elisabete C.B.A. Alegria -- Structure of the Book -- Final Remarks -- Part I Carbon Dioxide Utilization -- 2 Transition from Fossil-C to Renewable-C (Biomass and CO2) Driven by Hybrid Catalysis 7 Michele Aresta and Angela Dibenedetto -- 2.1 Introduction -- 2.2 The Dimension of the Problem -- 2.3 Substitutes for Fossil-C -- 2.4 Hybrid Catalysis: A New World -- 2.5 Hybrid Catalysis and Biomass Valorization -- 2.6 Hybrid Catalysis and CO2 Conversion -- 2.6.1 CO2 as Building Block -- 2.6.2 CO2 Conversion to Value-added Chemical and Fuels via Hybrid Systems -- 2.7 Conclusions -- References -- 3 Synthesis of Acetic Acid Using Carbon Dioxide 25 Philippe Kalck -- 3.1 Introduction -- 3.2 Synthesis of Methanol from CO2 and H2 -- 3.3 Carbonylation of Methanol Using CO2 -- 3.4 Carbonylation of Methane Using CO2 -- 3.5 Miscellaneous Reactions, Particularly Biocatalysis -- 3.6 Conclusions -- References -- 4 New Sustainable Chemicals and Materials Derived from CO2 and Bio-based Resources: A New Catalytic Challenge 35 Ana B. Paninho, Malgorzata E. Zakrzewska, Leticia R.C. Correa, Fátima Guedes da Silva, Luís C. Branco, and Ana V.M. Nunes -- 4.1 Introduction -- 4.2 Cyclic Carbonates from Bio-based Epoxides -- 4.2.1 Bio-based Epoxides Derived from Terpenes -- 4.2.2 Bio-based Vinylcyclohexene Oxide Derived from Butanediol -- 4.2.3 Bio-based Epichlorohydrin Derived from Glycerol -- 4.2.4 Epoxidized Vegetable Oils and Fatty Acids -- 4.3 Cyclic Carbonates Derived from Carbohydrates -- 4.4 Cyclic Carbonates Derived from Bio-based Diols -- 4.5 Conclusions -- Acknowledgements -- References -- 5 Sustainable Technologies in CO 2 Utilization: The Production of Synthetic Natural Gas 55 M. Carmen Bacariza, José M. Lopes, and Carlos Henriques -- 5.1 CO 2 Valorization Strategies -- 5.1.1 CO 2 to CO via Reverse Water-Gas Shift (RWGS) Reaction -- 5.1.2 CO2 to CH 4 -- 5.1.3 Co2 to C X H Y -- 5.1.4 CO2 to CH 3 OH -- 5.1.5 CO2 to CH 3 OCH 3 -- 5.1.6 CO2 to R-OH -- 5.1.7 CO2 to HCOOH, R-COOH, and R-CONH 2 -- 5.1.8 Target Products Analysis Based on Thermodynamics -- 5.2 Power-to-Gas: Sabatier Reaction Suitability for Renewable Energy Storage -- 5.3 CO 2 Methanation Catalysts -- 5.4 Zeolites: Suitable Supports with Tunable Properties to Assess Catalysts's Performance -- 5.5 Final Remarks -- References -- 6 Catalysis for Sustainable Aviation Fuels: Focus on Fischer-Tropsch Catalysis 73 Denzil Moodley, Thys Botha, Renier Crous, Jana Potgieter, Jacobus Visagie, Ryan Walmsley, and Cathy Dwyer -- 6.1 Introduction -- 6.1.1 Sustainable Aviation Fuels (SAF) via Fischer-Tropsch-based Routes -- 6.1.2 Introduction to FT Chemistry -- 6.1.3 FT Catalysts for SAF Production -- 6.1.4 Reactor Technology for SAF Production Using FTS -- 6.2 State-of-the-art Cobalt Catalysts -- 6.2.1 Catalyst Preparation Routes for Cobalt-based Catalysts -- 6.2.1.1 Precipitation Methodology - a Short Summary -- 6.2.1.2 Preparation Methods Using Pre-shaped Supports -- 6.2.1.2.1 Support Modification -- 6.2.1.2.2 Cobalt Impregnation -- 6.2.1.2.3 Calcination -- 6.2.1.2.4 Reduction -- 6.2.2 Challenges for Catalysts Operating with High Carbon Efficiency: Water Tolerance -- 6.2.3 Strategies to Increase Water Tolerance and Selectivity for Cobalt Catalysts -- 6.2.3.1 Optimizing Physico-chemical Support Properties for Stability at High Water Partial Pressure -- 6.2.3.2 Stabilizing the Support by Surface Coating -- 6.2.3.3 Impact of Crystallite Size on Selectivity -- 6.2.3.4 Metal Support Interactions with Cobalt Crystallites of Varying Size -- 6.2.3.5 The Role of Reduction Promoters and Support Promoters in Optimizing Selectivity -- 6.2.3.6 Role of Pore Diameter in Selectivity -- 6.2.3.7 Effect of Activation Conditions on Selectivity -- 6.2.4 Regeneration of Cobalt PtL Catalysts- Moving Toward Materials Circularity -- 6.3 An Overview of Fe Catalysts: Direct Route for CO 2 Conversion -- 6.3.1 Introduction -- 6.3.2 Effect of Temperature -- 6.3.3 Effect of Pressure -- 6.3.4 Effect of H 2 :CO Ratio -- 6.3.5 Catalyst Development -- 6.3.6 Stability to Oxidation by Water -- 6.3.7 Sufficient Surface Area -- 6.3.8 Availability of Two Distinct Catalytically Active Sites/phases -- 6.3.9 Sufficient Alkalinity for Adsorption and Chain Growth -- 6.4 Future Perspectives -- References -- 7 Sustainable Catalytic Conversion of CO 2 into Urea and Its Derivatives 117 Maurizio Peruzzini, Fabrizio Mani, and Francesco Barzagli -- 7.1 Introduction -- 7.2 Catalytic Synthesis of Urea -- 7.2.1 Urea from CO 2 Reductive Processes -- 7.2.1.1 Electrocatalysis -- 7.2.1.2 Photocatalysis -- 7.2.1.3 Magneto-catalysis -- 7.2.2 Urea from Ammonium Carbamate -- 7.3 Catalytic Synthesis of Urea Derivatives -- 7.4 Conclusions and Future Perspectives -- Part II Transformation of Volatile Organic Compounds (VOCs) -- 8 Catalysis Abatement of No X /vocs Assisted by Ozone 141 Zhihua Wang and Fawei -- 8.1 No X /voc Emission and Treatment Technologies -- 8.1.1 No X /voc Emissions -- 8.1.2 No X Treatment Technologies -- 8.1.2.1 Sncr -- 8.1.2.2 Scr -- 8.1.2.3 SCR Catalysts -- 8.1.2.4 Ozone-assisted Oxidation Technology -- 8.1.3 VOC Treatment Technologies -- 8.1.3.1 Adsorption -- 8.1.3.2 Regenerative Combustion -- 8.1.3.3 Catalytic Oxidation -- 8.1.3.4 Photocatalytic Oxidation -- 8.1.3.5 Plasma-assisted Catalytic Oxidation -- 8.2 NO Oxidation by Ozone -- 8.2.1 NO Homogeneous Oxidation by Ozone -- 8.2.1.1 Effect of O 3 /NO Ratio -- 8.2.1.2 Effect of Temperature -- 8.2.1.3 Effect of Residence Time -- 8.2.1.4 Process Parameter Optimization -- 8.2.2 Heterogeneous Catalytic Deep Oxidation -- 8.2.2.1 Catalytic NO Deep Oxidation by O 3 Alone -- 8.2.2.2 Catalytic NO Deep Oxidation by Combination of O 3 and H 2 O -- 8.3 Oxidation of VOCs by Ozone -- 8.3.1 Aromatics -- 8.3.1.1 Toluene -- 8.3.1.2 Benzene -- 8.3.2 Oxygenated VOCs -- 8.3.2.1 Formaldehyde -- 8.3.2.2 Acetone -- 8.3.2.3 Alcohols -- 8.3.3 Chlorinated VOCs -- 8.3.3.1 Chlorobenzene -- 8.3.3.2 Dichloromethane -- 8.3.3.3 Dioxins and Furans -- 8.3.4 Sulfur-containing VOCs -- 8.4 Conclusions -- References -- 9 Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions 161 Elisabete C.B.A. Alegria, Manas Sutradhar, and Tannistha R. Barman -- 9.1 Introduction -- 9.2 Benzene -- 9.3 Toluene -- 9.4 Ethylbenzene -- 9.5 Xylene -- 9.6 Final Remarks -- Acknowledgments -- References -- 10 Catalytic Cyclohexane Oxyfunctionalization 181 Manas Sutradhar, Elisabete C.B.A. Alegria, M. Fátima C. Guedes da Silva, and Armando J.L. Pombeiro -- 10.1 Introduction -- 10.2 Transition Metal Catalysts for Cyclohexane Oxidation -- 10.2.1 Vanadium Catalysts -- 10.2.2 Iron Catalysts -- 10.2.3 Cobalt Catalysts -- 10.2.4 Copper Catalysts -- 10.2.5 Molybdenum Catalysts -- 10.2.6 Rhenium Catalysts -- 10.2.7 Gold Catalysts -- 10.3 Mechanisms -- 10.4 Final Comments -- Acknowledgments -- References -- Part III Carbon-based Catalysis -- 11 Carbon-based Catalysts for Sustainable Chemical Processes 209 Katarzyna Morawa Eblagon, Raquel P. Rocha, M. Fernando R. Pereira, and José Luís Figueiredo -- 11.1 Introduction -- 11.1.1 Nanostructured Carbon Materials -- 11.1.2 Carbon Surface Chemistry -- 11.2 Metal-free Carbon Catalysts for Environmental Applications -- 11.2.1 Wet Air Oxidation and Ozonation with Carbon Catalysts -- 11.3 Carbon-based Catalysts for Sustainable Production of Chemicals and Fuels from Biomass -- 11.3.1 Carbon Materials as Catalysts and Supports -- 11.3.2 Cascade Valorization of Biomass with Multifunctional Catalysts -- 11.3.3 Carbon Catalysts Produced from Biomass -- 11.4 Summary and Outlook -- Acknowledgments -- References -- 12 Carbon-based Catalysts as a Sustainable and Metal-free Tool for Gas-phase Industrial Oxidation Processes 225 Giulia Tuci, Andrea Rossin, Matteo Pugliesi, Housseinou Ba, Cuong Duong-Viet, Yuefeng Liu, Cuong Pham-Huu, and Giuliano Giambastiani -- 12.1 Introduction -- 12.2 The H 2 S Selective Oxidation to Elemental Sulfur -- 12.3 Alkane Dehydrogenation -- 12.3.1 Alkane Dehydrogenation under Oxidative Environment: The ODH Process -- 12.3.2 Alkane Dehydrogenation under Steam- and Oxygen-free Conditions: The
DDH Reaction -- 12.4 Conclusions -- Acknowledgments -- References -- 13 Hybrid Carbon-Metal Oxide Catalysts for Electrocatalysis, Biomass Valorization and, Wastewater Treatment: Cutting-Edge Solutions for a Sustainable World 247 Clara Pereira, Diana M. Fernandes, Andreia F. Peixoto, Marta Nunes, Bruno Jarrais, Iwona Kuźniarska-Biernacka, and Cristina Freire -- 13.1 Introduction -- 13.2 Hybrid Carbon-metal Oxide Electrocatalysts for Energy-related Applications -- 13.2.1 Oxygen Reduction Reaction (ORR) -- 13.2.2 Oxygen Evolution Reaction (OER) -- 13.2.3 Hydrogen Evolution Reaction (HER) -- 13.2.4 CO 2 Reduction Reaction (CO 2 RR) -- 13.3 Biomass Valorization over Hybrid Carbon-metal Oxide Based (Nano)catalysts -- 13.4 Advanced (Photo)catalytic Oxidation Processes for Wastewater Treatment -- 13.4.1 Heterogeneous Fenton Process -- 13.4.2 Heterogeneous photo-Fenton Process -- 13.4.3 Heterogeneous electro-Fenton Process -- 13.4.4 Photocatalytic Oxidation -- 13.5 Advanced Catalytic Reduction Processes for Wastewater Treatment -- 13.6 Conclusions and Future Perspectives -- Acknowledgments -- References -- Volume -- About the Editors -- Preface -- Part IV Coordination, Inorganic, and Bioinspired Catalysis -- 14 Hydroformylation Catalysts for the Synthesis of Fine Chemicals 301 Mariette M. Pereira, Rui M.B. Carrilho, Fábio M.S. Rodrigues, Lucas D. Dias, and Mário J.F. Calvete -- 15 Synthesis of New Polyolefins by Incorporation of New Comonomers 323 Kotohiro Nomura and Suphitchaya Kitphaitun -- 16 Catalytic Depolymerization of Plastic Waste 339 Noel Angel Espinosa-Jalapa and Amit Kumar -- 17 Bioinspired Selective Catalytic C-H Oxygenation, Halogenation, and Azidation of Steroids 369 Konstantin P. Bryliakov -- 18 Catalysis by Pincer Compounds and Their Contribution to Environmental and Sustainable Processes 389 Hugo Valdés and David Morales-Morales -- 19 Heterometallic Complexes: Novel Catalysts for Sophisticated Chemical Synthesis 409 Franco Scalambra, Ismael Francisco Díaz-Ortega, and Antonio Romerosa -- 20 Metal-Organic Frameworks in Tandem Catalysis 429 Anirban Karmakar and Armando J.L. Pombeiro -- 21 (Tetracarboxylate)bridged-di-transition Metal Complexes and Factors Impacting Their Carbene Transfer Reactivity 445 LiPing Xu, Adrian Varela-Alvarez, and Djamaladdin G. Musaev -- 22 Sustainable Cu-based Methods for Valuable Organic Scaffolds 461 Argyro Dolla, Dimitrios Andreou, Ethan Essenfeld, Jonathan Farhi, Ioannis N. Lykakis, and George E. Kostakis -- 23 Environmental Catalysis by Gold Nanoparticles 481 Sónia Alexandra Correia Carabineiro -- 24 Platinum Complexes for Selective Oxidations in Water 515 Alessandro Scarso, Paolo Sgarbossa, Roberta Bertani, and Giorgio Strukul -- 25 The Role of Water in Reactions Catalyzed by Transition Metals 537 A.W. Augustyniak and A.M. Trzeciak -- 26 Using Speciation to Gain Insight into Sustainable Coupling Reactions and Their Catalysts 559 Skyler Markham, Debbie C. Crans, and Bruce Atwater -- 27 Hierarchical Zeolites for Environmentally Friendly Friedel Crafts Acylation Reactions 577 Ana P. Carvalho, Angela Martins, Filomena Martins, Nelson Nunes, and Rúben Elvas-Leitão -- Volume -- About the Editors -- Preface -- Part V Organocatalysis -- 28 Sustainable Drug Substance Processes Enabled by Catalysis: Case Studies from the Roche Pipeline 611 Kurt Püntener, Stefan Hildbrand, Helmut Stahr, Andreas Schuster, Hans Iding and Stephan Bachmann -- 29 Supported Chiral Organocatalysts for Accessing Fine Chemicals 639 Ana C. Amorim and Anthony J. Burke -- 30 Synthesis of Bio-based Aliphatic Polyesters from Plant Oils by Efficient Molecular Catalysis 659 Kotohiro Nomura and Nor Wahida Binti Awang -- 31 Modern Strategies for Electron Injection by Means of Organic Photocatalysts: Beyond Metallic Reagents 675 Takashi Koike -- 32 Visible Light as an Alternative Energy Source in Enantioselective Catalysis 687 Ana Maria Faisca Phillips and Armando J.L. Pombeiro -- Part VI Catalysis for the Purification of Water and Liquid Fuels -- 33 Heterogeneous Photocatalysis for Wastewater Treatment: A Major Step Towards Environmental Sustainability 719 Shima Rahim Pouran and Aziz Habibi-Yangjeh -- 34 Sustainable Homogeneous Catalytic Oxidative Processes for the Desulfurization of Fuels 743 Federica Sabuzi, Giuseppe Pomarico, Pierluca Galloni, and Valeria Conte -- 35 Heterogeneous Catalytic Desulfurization of Liquid Fuels: The Present and the Future 757 Rui G. Faria, Alexandre Viana, Carlos M. Granadeiro, Luís Cunha-Silva, and Salete S. Balula -- Part VII Hydrogen Formation, Storage, and Utilization -- 36 Paraformaldehyde: Opportunities as a C1-Building Block and H 2 Source for Sustainable Organic Synthesis 785 Ana Maria Faísca Phillips, Maximilian N. Kopylovich, Leandro Helgueira de Andrade, and Martin H.G. Prechtl -- 37 Hydrogen Storage and Recovery with the Use of Chemical Batteries 819 Henrietta Horváth, Gábor Papp, Ágnes Kathó, and Ferenc Joó -- 38 Low-cost Co and Ni MOFs/CPs as Electrocatalysts for Water Splitting Toward Clean Energy-Technology 847 Anup Paul, Biljana Šljukić, and Armando J.L. Pombeiro -- Index
Interdisciplinary approach to sustainability, illustrating current catalytic approaches in applied chemistry, chemical engineering, and materials science Catalysis for a Sustainable Environment covers the use of catalysis in its various approaches, including homogeneous, supported, and heterogeneous catalysis, and photo- and electrocatalysis, towards sustainable environmental benefits. The text fosters interdisciplinarity in sustainability by illustrating modern perspectives in catalysis, from fields including inorganic, organic, organometallic, bioinorganic, pharmacological, and analytical chemistry, along with chemical engineering and materials science. The chapters are grouped in seven sections on (i) Carbon Dioxide Utilization, (ii) Volatile Organic Compounds (VOCs) Transformation, (iii) Carbon-based Catalysis, (iv) Coordination, Inorganic, and Bioinspired Catalysis, (v) Organocatalysis, (vi) Catalysis for Water and Liquid Fuels Purification, and (vii) Hydrogen Formation/Storage. Sample topics covered in Catalysis for a Sustainable Environment include: Activation of relevant small molecules with strong environmental impact and carbon-based catalysts for sustainable chemical processes Catalytic synthesis of important added value organic compounds, in both commodity and fine chemistries (large and small scale productions, respectively) Development of catalytic systems operating under environmentally benign and mild conditions towards the establishment of sustainable energy processes Catalysis by coordination, metal and metal-free compounds, MOFs (metal-organic frameworks) and nanoparticles, and their contribution to environmental and sustainable processes Employing the latest approaches that impact global and circular economies, Catalysis for a Sustainable Environment serves as an excellent starting point for innovative catalytic approaches, and will appeal to professionals in engineering, academia, and industry who wish to improve existing processes and materials
Includes bibliographical references
Online resource; title from PDF title page (John Wiley, viewed March 6, 2024)
John Wiley and Sons Wiley Online Library UBCM All Obooks
HTTP:URL=https://onlinelibrary.wiley.com/doi/book/10.1002/9781119870647
件 名 LCSH:Catalysis
LCSH:Catalysis -- Environmental aspects  全ての件名で検索
CSHF:Catalyse
CSHF:Catalyse -- Aspect de l'environnement  全ての件名で検索
分 類 LCC:QD505
DC23:541.395
書誌ID OB00007902
ISBN 9781119870647

 類似資料